Данная статья посвящена разработке метода приближенного построения множества достижимости для нелинейной по фазовым переменным управляемой системы с дискретным временем. На управляющие параметры наложены жесткие геометрические ограничения. Для решения указанной задачи используется техника, ранее разработанная и примененная для случая с непрерывным временем и дифференциальными уравнениями. Необходимая оценка множества достижимости может быть получена как множество уровня специальной кусочно-заданной функции цены, построенной на сетке из симплексов в фазовом пространстве. В работе приведены формулы для вычисления коэффициентов такой функции, позволяющие проанализировать отличие случая с дискретным временем
от случая с непрерывным. Для модельного примера произведены вычисления кусочно-аффинных функций цены и соответствующих внутренних и внешних оценок множества достижимости.
Ключевые слова:
нелинейная динамика, множество достижимости, функция цены, кусочно-аффинные оценки